2.65
练习 2.65 利用练习2.63和练习2.64的结果,给出对采用(平衡)二叉树方式实现的集合的union-set和intersection-set操作的实现。
先复用一下前面的代码:
(define entry car)
(define left-branch cadr)
(define right-branch caddr)
(define (quotient n m)
(floor (/ n m))
)
x#<undef>
(define (make-tree entry left right)
(list entry left right)
)
#<undef>
(define (list->tree elements)
(car
(partial-tree
elements
(length elements)
)
)
)
(define (partial-tree elts n)
(if (= n 0)
(cons '() elts)
(let
(
(left-size
(quotient (- n 1) 2)
)
)
(let ((left-result (partial-tree elts left-size)))
(let
(
(left-tree (car left-result))
(non-left-elts (cdr left-result))
(right-size (- n (+ left-size 1)))
)
(let
(
(this-entry (car non-left-elts))
(right-result
(partial-tree
(cdr non-left-elts)
right-size
)
)
)
(let
(
(right-tree (car right-result))
(remaining-elts
(cdr right-result)
)
)
(cons
(make-tree this-entry left-tree right-tree)
remaining-elts
)
)
)
)
)
)
)
)
(define (tree->list tree)
(if (null? tree)
'()
(append
(tree->list (left-branch tree))
(cons
(entry tree)
(tree->list (right-branch tree))
)
)
)
)
#<undef>
按照前面的做法,将一个表变成一棵二叉树,还要是平衡的,前提是这个表得有序。但是在有序表的前提下,其实不用二叉树也可以实现 的union-set (练习2.62)。
(define (union-set-sorted-list set1 set2)
(cond
((null? set1) set2)
((null? set2) set1)
(
(< (car set1) (car set2))
(cons
(car set1)
(union-set-sorted-list (cdr set1) set2)
)
)
(
(= (car set1) (car set2))
(union-set-sorted-list (cdr set1) set2)
)
(
else
(cons
(car set2)
(union-set-sorted-list set1 (cdr set2))
)
)
)
)
(union-set-sorted-list (list 1 2 3 4) (list 5 6 7 8))
(1 2 3 4 5 6 7 8)
所以很自然地想到,利用 2.62 的实现,将两棵平衡二叉树转换成两个有序的列表,在完成合并后,再转换回成树(由于结果表是有序的,转换回成树仍然是平衡二叉树)。
union-set
(define (union-set tree1 tree2)
(list->tree
(union-set-sorted-list (tree->list tree1) (tree->list tree2))
)
)
(union-set
(list->tree (list 1 2 3 4))
(list->tree (list 5 6 7 8))
)
(4 (2 (1 nil nil) (3 nil nil)) (6 (5 nil nil) (7 nil (8 nil nil))))
intersection-set
(define (intersection-set-sorted-list list1 list2)
(if (or (null? list1) (null? list2))
'()
(if (= (car list1) (car list2))
(cons
(car list1)
(intersection-set-sorted-list (cdr list1) (cdr list2))
)
(if (< (car list1) (car list2))
(intersection-set-sorted-list (cdr list1) list2)
(intersection-set-sorted-list list1 (cdr list2))
)
)
)
)
(intersection-set-sorted-list (list 1 2 3 4) (list 4 5 6 7))
(4)
(define (intersection-set tree1 tree2)
(list->tree
(intersection-set-sorted-list
(tree->list tree1)
(tree->list tree2)
)
)
)
(intersection-set (list->tree (list 1 2 3 4 5)) (list->tree (list 4 5 6 7 8)))
(4 nil (5 nil nil))