1.40
(newtons-method (cubic a b c) 1)
to approximate zeros of the cubic x3+ax2+bx+c .
fixed-point
(define tolerance 0.00001)
(define (fixed-point f first-guess)
(define (close-enough? v1 v2)
(< (abs (- v1 v2))
tolerance))
(define (try guess)
(let ((next (f guess)))
(if (close-enough? guess next)
next
(try next))))
(try first-guess))
deriv
(define dx 0.00001)
(define (deriv g)
(lambda (x)
(/ (- (g (+ x dx)) (g x))
dx)))
(define (newton-transform g)
(lambda (x)
(- x (/ (g x)
((deriv g) x)))))
newtons-method
(define (newtons-method g guess)
(fixed-point (newton-transform g)
guess))
Now let's define cubic
f(x)=x3+ax2+bx+c
(define (cubic a b c) (lambda (x) (+ (* x x x) (* a (* x x)) (* b x) c)))
((cubic 1 1 1) 1)
((cubic 1 1 1) -1)
Finally let's verify the result
(newtons-method (cubic 1 1 1) 1)