1.10
Exercise 1.10: The following procedure computes a mathematical function called Ackermann’s function.
(define (A x y)
(cond ((= y 0) 0)
((= x 0) (* 2 y))
((= y 1) 2)
(else (A (- x 1)
(A x (- y 1))))))
What are the values of the following expressions?
(A 1 10)
The steps under the hood:
(A 1 10)
(A (- 1 1) (A 1 (- 10 1))) (A 0 (A 1 9)) (A 0 (A (- 1 1) (A 1 (- 9 1)))) (A 0 (A 0 (A 1 8))) (A 0 (A 0 (A (- 1 1) (A 1 (- 8 1))))) (A 0 (A 0 (A 0 (A 1 7)))) (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 7 1)))))) (A 0 (A 0 (A 0 (A 0 (A 1 6))))) (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 6 1))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5)))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 5 1)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 4))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 4 1))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 3 1)))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 2 1))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1)))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 2))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 4)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 8))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 8))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 16)))))) (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 16)))))) (A 0 (A 0 (A 0 (A 0 (A 0 32))))) (A 0 (A 0 (A 0 (A 0 (* 2 32))))) (A 0 (A 0 (A 0 (A 0 64)))) (A 0 (A 0 (A 0 (* 2 64)))) (A 0 (A 0 (A 0 128))) (A 0 (A 0 (* 2 128))) (A 0 (A 0 256)) (A 0 (* 2 256)) (A 0 512) (* 2 512) 1024
(A 2 4)
The steps under the hood:
(A 2 4)
(A (- 2 1) (A 2 (- 4 1))) (A 1 (A 2 3)) (A 1 (A (- 2 1) (A 2 (- 3 1)))) (A 1 (A 1 (A 2 2))) (A 1 (A 1 (A (- 2 1) (A 2 (- 2 1))))) (A 1 (A 1 (A 1 (A 2 1)))) (A 1 (A 1 (A 1 2))) (A 1 (A 1 (A (- 1 1) (A 1 (- 2 1))))) (A 1 (A 1 (A 0 (A 1 1)))) (A 1 (A 1 (A 0 2))) (A 1 (A 1 (* 2 2))) (A 1 (A 1 4)) (A 1 (A (- 1 1) (A 1 (- 4 1)))) (A 1 (A 0 (A 1 3))) (A 1 (A 0 (A (- 1 1) (A 1 (- 3 1))))) (A 1 (A 0 (A 0 (A 1 2)))) (A 1 (A 0 (A 0 (A (- 1 1) (A 1 (- 2 1)))))) (A 1 (A 0 (A 0 (A 0 (A 1 1))))) (A 1 (A 0 (A 0 (A 0 2)))) (A 1 (A 0 (A 0 (* 2 2)))) (A 1 (A 0 (A 0 4))) (A 1 (A 0 (* 2 4))) (A 1 (A 0 8)) (A 1 (* 2 8)) (A 1 16) (A (- 1 1) (A 1 (- 16 1))) (A 0 (A 1 15)) (A 0 (A (- 1 1) (A 1 (- 15 1)))) (A 0 (A 0 (A 1 14))) (A 0 (A 0 (A (- 1 1) (A 1 (- 14 1))))) (A 0 (A 0 (A 0 (A 1 13)))) (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 13 1)))))) (A 0 (A 0 (A 0 (A 0 (A 1 12))))) (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 12 1))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 11)))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 11 1)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 10))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 10 1))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 9)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 9 1)))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 8))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 8 1))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 7)))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 7 1)))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 6))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 6 1))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5)))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 5 1)))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 4))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 4 1))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3)))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 3 1)))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 2 1))))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1)))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 2))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4)))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 4)))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 8))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 8))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 16)))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 16)))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 32))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 32))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 64)))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 64)))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 128))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 128))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 256)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 256)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 512))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 512))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 1024)))))) (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 1024)))))) (A 0 (A 0 (A 0 (A 0 (A 0 2048))))) (A 0 (A 0 (A 0 (A 0 (* 2 2048))))) (A 0 (A 0 (A 0 (A 0 4096)))) (A 0 (A 0 (A 0 (* 2 4096)))) (A 0 (A 0 (A 0 8192))) (A 0 (A 0 (* 2 8192))) (A 0 (A 0 16384)) (A 0 (* 2 16384)) (A 0 32768) (* 2 32768) 65536
(A 3 3)
The steps under the hood:
(A 3 3)
(A (- 3 1) (A 3 (- 3 1))) (A 2 (A 3 2)) (A 2 (A (- 3 1) (A 3 (- 2 1)))) (A 2 (A 2 (A 3 1))) (A 2 (A 2 2)) (A 2 (A (- 2 1) (A 2 (- 2 1)))) (A 2 (A 1 (A 2 1))) (A 2 (A 1 2)) (A 2 (A (- 1 1) (A 1 (- 2 1)))) (A 2 (A 0 (A 1 1))) (A 2 (A 0 2)) (A 2 (* 2 2)) (A 2 4) (A (- 2 1) (A 2 (- 4 1))) (A 1 (A 2 3)) (A 1 (A (- 2 1) (A 2 (- 3 1)))) (A 1 (A 1 (A 2 2))) (A 1 (A 1 (A (- 2 1) (A 2 (- 2 1))))) (A 1 (A 1 (A 1 (A 2 1)))) (A 1 (A 1 (A 1 2))) (A 1 (A 1 (A (- 1 1) (A 1 (- 2 1))))) (A 1 (A 1 (A 0 (A 1 1)))) (A 1 (A 1 (A 0 2))) (A 1 (A 1 (* 2 2))) (A 1 (A 1 4)) (A 1 (A (- 1 1) (A 1 (- 4 1)))) (A 1 (A 0 (A 1 3))) (A 1 (A 0 (A (- 1 1) (A 1 (- 3 1))))) (A 1 (A 0 (A 0 (A 1 2)))) (A 1 (A 0 (A 0 (A (- 1 1) (A 1 (- 2 1)))))) (A 1 (A 0 (A 0 (A 0 (A 1 1))))) (A 1 (A 0 (A 0 (A 0 2)))) (A 1 (A 0 (A 0 (* 2 2)))) (A 1 (A 0 (A 0 4))) (A 1 (A 0 (* 2 4))) (A 1 (A 0 8)) (A 1 (* 2 8)) (A 1 16) (A (- 1 1) (A 1 (- 16 1))) (A 0 (A 1 15)) (A 0 (A (- 1 1) (A 1 (- 15 1)))) (A 0 (A 0 (A 1 14))) (A 0 (A 0 (A (- 1 1) (A 1 (- 14 1))))) (A 0 (A 0 (A 0 (A 1 13)))) (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 13 1)))))) (A 0 (A 0 (A 0 (A 0 (A 1 12))))) (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 12 1))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 11)))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 11 1)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 10))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 10 1))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 9)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 9 1)))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 8))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 8 1))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 7)))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 7 1)))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 6))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 6 1))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5)))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 5 1)))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 4))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 4 1))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3)))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 3 1)))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A (- 1 1) (A 1 (- 2 1))))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1)))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 2))))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4)))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 4)))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 8))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 8))))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 16)))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 16)))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 32))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 32))))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 64)))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 64)))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 128))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 128))))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 256)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 256)))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 512))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 512))))))) (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 1024)))))) (A 0 (A 0 (A 0 (A 0 (A 0 (* 2 1024)))))) (A 0 (A 0 (A 0 (A 0 (A 0 2048))))) (A 0 (A 0 (A 0 (A 0 (* 2 2048))))) (A 0 (A 0 (A 0 (A 0 4096)))) (A 0 (A 0 (A 0 (* 2 4096)))) (A 0 (A 0 (A 0 8192))) (A 0 (A 0 (* 2 8192))) (A 0 (A 0 16384)) (A 0 (* 2 16384)) (A 0 32768) (* 2 32768) 65536
Consider the following procedures, where A is the procedure defined above:
(define (f n) (A 0 n))
(* 2 n)
(define (g n) (A 1 n))
(A (- 1 1) (A 1 (- n 1)))
(define (h n) (A 2 n))
(define (k n) (* 5 n n))
Give concise mathematical definitions for the functions computed by the procedures f, g, and h for positive integer values of n. For example, (k n) computes .